

El Camino College

COURSE OUTLINE OF RECORD - Official

I. GENERAL COURSE INFORMATION

Subject and Number: Descriptive Title:	Mathematics 190 Single Variable Ca	Iculus and Analytic Geometry I
Course Disciplines:	Mathematics	
Division:	Mathematical Scie	nces
Catalog Description:	continuity, derivatives transcendental functio transcendental functio of calculus; linear app graph to its derivatives	will be introduced to topics such limits, and antiderivatives of algebraic and ns; definite integrals of algebraic and ns with and without the fundamental theorem roximations; relating features of a function's s; and application problems using derivatives rentiation. Problem solving using computer ssed.
		lit allowed for calculus is one course from th 160 or 161 or Math 190 or 191.
Conditions of Enrollment:	Prerequisite Mathematics 180 with a minimum gra or qualification by test Placement Test) ar	ing (El Camino College Mathematics
Course Length: Hours Lecture: Hours Laboratory: Course Units:	X Full Term C 5.00 hours per wee 0 hours per week [5.00	other (Specify number of weeks): ekTBA TBA
Grading Method: Credit Status	Letter Associate Degree	Credit
Transfer CSU: Transfer UC:		Prior to July 1992 Prior to July 1992
General Education: El Camino College:	Thinking	Rationality – Communication and Analytical
	Term:	Other: Approved

	6 – Mathematics Competency	/	
	Term:	Other: Approved	
CSU GE:	B4 - Mathematics/Quantitativ	e Thinking	
	Term: Fall 2001	Other:	
IGETC:	2A - Mathematical Concepts	and Quantitative Reasoning	
	Term: Fall 2001	Other:	

II. OUTCOMES AND OBJECTIVES

A. COURSE STUDENT LEARNING OUTCOMES (The course student learning outcomes are listed below, along with a representative assessment method for each. Student learning outcomes are not subject to review, revision or approval by the College Curriculum Committee)

- 1. UNDERSTANDING CONCEPTS Students will explain and demonstrate the idea of the limit, the derivative and the integral.
- 2. SOLVING PROBLEMS Students will solve problems, including problems involving velocity and acceleration, by using derivatives and integrals.
- 3. GRAPHS Students will use techniques of calculus to determine maxima, minima, and points of inflection on the graph of a function.
- 4. PROOFS Students will analyze and construct proofs involving limits, derivatives and integrals.

The above SLOs were the most recent available SLOs at the time of course review. For the most current SLO statements, visit the El Camino College SLO webpage at http://www.elcamino.edu/academics/slo/.

B. Course Student Learning Objectives (The major learning objective for students enrolled in this course are listed below, along with a representative assessment method for each)

1. Evaluate limits of functions symbolically, graphically, and numerically, and describe the continuity/discontinuity of a function.

Objective Exams

2. Calculate derivatives of algebraic and transcendental functions symbolically using rules and using the definition of the derivative, as well as estimating derivatives graphically and numerically.

Objective Exams

3. Use linearization and Newton's Method to make approximations of functions.

Laboratory reports

4. Relate features of a function (increasing/decreasing, extrema, concavity, inflection points) to its derivatives.

Objective Exams

5. Solve application problems using differential calculus.

Objective Exams

6. Estimate definite integrals using Riemann sums.

Quizzes

7. Calculate definite integrals, both using evaluating the limit of Riemann sums and using the Fundamental Theorem of Calculus.

Objective Exams

8. Anti-differentiate functions, using the method of substitution when appropriate.

Objective Exams

9. Use computing software to solve calculus problems.

Homework Problems

III. OUTLINE OF SUBJECT MATTER (Topics are detailed enough to enable a qualified instructor to determine the major areas that should be covered as well as ensure consistency from instructor to instructor and semester to semester.)

Lecture or Lab	Approximate Hours	Topic Number	Major Topic
Lecture	15	I	LIMITS A. Definition of limits, including the delta epsilon version
			B. One-sided and two-sided limits
			C. Limit laws
			D. Infinite limits and limits at infinity
			E. Continuity
			F. Intermediate Value Theorem and its applications
			G. Indeterminate Forms and L'Hopital's Rule, including indeterminate quotients, products, differences and powers.
Lecture	20	II	DERIVATIVES A. Definition of the derivative
			B. Differentiation rules (power, product, quotient, chain)
			C. Derivatives of trigonometric functions and their inverses
			D. Derivatives of exponential and logarithmic functions
			E. Derivatives of inverse functions
			F. Implicit Differentiation
			G. Hyperbolic sine and cosine functions
Lecture	15	III	APPLICATIONS OF THE DERIVATIVE A. Tangent Lines
			B. Related Rates
			C. Linear Approximations
			D. Differentials
			E. Newton's Method
			F. Optimization
			G. Velocity and Acceleration
Lecture	15	IV	GRAPHING A. Absolute and local extrema
			B. Extreme Value Theorem and its applications
			C. Mean Value Theorem and its applications
			D. Relation between the first derivative function and the regions of increasing and decreasing on the graph of a function

Lecture	20	V	 E. First derivative test F. Relation between the second derivative and regions of concavity on the graph of a function G. Second derivative test H. Curve sketching techniques ANTI-DIFFERENTIATION, INTEGRATION AND THE FUNDAMENTAL THEOREM OF CALCULUS A. Anti-differentiation and the indefinite integral B. Riemann sums and the formal definition of the definite
			 B. Riemann sums and the formal definition of the definite integral C. The definite integral and its properties D. The Fundamental Theorem of Calculus E. The substitution rule for anti-differentiation F. Area under curves application problems G. Applications of the Net Change Theorem
Lecture	5	VI	PROBLEM SOLVING USING COMPUTING SOFTWARE
Total Lecture Hours		90	·
Tota	al Laboratory Hours	0	
	Total Hours	90	

IV. PRIMARY METHOD OF EVALUATION AND SAMPLE ASSIGNMENTS

A. PRIMARY METHOD OF EVALUATION:

Problem solving demonstrations (computational or non-computational)

B. TYPICAL ASSIGNMENT USING PRIMARY METHOD OF EVALUATION:

Use the limit definition of the derivative to find the derivative of

f(x)=sqrt(5x+2)``

C. COLLEGE-LEVEL CRITICAL THINKING ASSIGNMENTS:

- A box with a square base and no top must have a volume of four cubic feet.
 Calculate the dimensions of the box that minimize the amount of material required.
- 2. Use computing software and Newton's method to find all real zeros of $f(x) = x^3$ -6x + 1, correct to 8 decimal places.

D. OTHER TYPICAL ASSESSMENT AND EVALUATION METHODS:

Objective Exams

Other exams

Quizzes

Written homework

Homework Problems

Other (specify):

Computer assisted problem assignments

V. INSTRUCTIONAL METHODS

Demonstration Discussion Lecture Other (please specify) Computing software demonstrations

Note: In compliance with Board Policies 1600 and 3410, Title 5 California Code of Regulations, the Rehabilitation Act of 1973, and Sections 504 and 508 of the Americans with Disabilities Act, instruction delivery shall provide access, full inclusion, and effective communication for students with disabilities.

VI. WORK OUTSIDE OF CLASS

Study Answer questions Skill practice Required reading Problem solving activities Written work Observation of or participation in an activity related to course content Other (specify) Problem solving using computer software

Estimated Independent Study Hours per Week: 10

VII. TEXTS AND MATERIALS

A. UP-TO-DATE REPRESENTATIVE TEXTBOOKS James Stewart. <u>Calculus, Early Transcendentals</u>. 8th ed. Brooks/Cole, 2015.

B. ALTERNATIVE TEXTBOOKS

C. REQUIRED SUPPLEMENTARY READINGS

D. OTHER REQUIRED MATERIALS

VIII. CONDITIONS OF ENROLLMENT

A. Requisites (Course and Non-Course Prerequisites and Corequisites)

	Requisites	Category and Justification
- 1		

Course Prerequisite Mathematics- 180 or	Sequential	
Non-Course Prerequisite	The material is sequential. If they can't demonstrate on a placement test that they know the material from Precalculus and Trigonometry, then they will not be prepared.	
B. Requisite Skills		

3. Requisite Skills

Requisite Skills

Solve algebraic, exponential, logarithmic and trigonometric equations, and equations with absolute value. MATH 180 -

Solve equations involving polynomial, rational, exponential, logarithmic, trigonometric functions.

Graph algebraic, exponential, logarithmic and trigonometric functions. MATH 180 -Graph relations (including polynomial, rational, exponential, logarithmic, trigonometric functions and conics), using transformations (shifting, stretching, reflection).

Evaluate algebraic, exponential, and logarithmic functions, as well as trigonometric functions and their inverses. MATH 180 -

Analyze functions (including polynomial, algebraic, rational, exponential, logarithmic, trigonometric) for critical features, including: intercepts, asymptotes, domain, range, and average rate of change.

MATH 180 -

Determine the inverse of a function (polynomial, algebraic, rational, exponential, logarithmic, trigonometric) and analyze it in terms of critical features.

C. Recommended Preparations (Course and Non-Course)

D. Recommended Skills

Recommended Skills

E. Enrollment Limitations

Enrollment Limitations and Category	Enrollment Limitations Impact
-------------------------------------	-------------------------------

Course created by V. Skinner on 01/31/2015.

BOARD APPROVAL DATE:

LAST BOARD APPROVAL DATE: 12/18/2017

Last Reviewed and/or Revised by Gregory Fry on 01/31/2015

20015